Model
src.geostat.model.Model
dataclass
Model class for performing Gaussian Process (GP) training and prediction with optional warping.
The Model
class integrates a GP model with optional data warping, and supports data generation on given location,
training on given location and observation data, and prediction on given location.
Parameters:
-
gp
(GP
) –The Gaussian Process model to be used for training and prediction.
-
warp
(Warp
, default:None
) –An optional warping transformation applied to the data. If not specified,
NoWarp
is used by default. -
parameter_sample_size
(int
, default:None
) –The number of parameter samples to draw. Default is None.
-
locs
(ndarray
, default:None
) –A NumPy array containing location data.
-
vals
(ndarray
, default:None
) –A NumPy array containing observed values corresponding to
locs
. -
cats
(ndarray
, default:None
) –A NumPy array containing categorical data.
-
report
(Callable
, default:None
) –A custom reporting function to display model parameters. If not provided, a default reporting function is used.
-
verbose
(bool
, default:True
) –Whether to print model parameters and status updates. Default is True.
Details:
To generate synthetic data at \(n\) locations in \(k\)-dimensional
space, pass the locations into generate()
:
To fit to data at \(n\) locations, pass locations and values into
fit()
:
Examples:
Initializing a Model
with a Gaussian Process:
from geostat import GP, Model, Parameters
from geostat.kernel import Noise
import numpy as np
# Create parameters.
p = Parameters(nugget=1.)
# Define the Gaussian Process and the model
gp = GP(kernel=Noise(nugget=p.nugget))
locs = np.array([[0.0, 1.0], [1.0, 2.0]])
vals = np.array([1.0, 2.0])
model = Model(gp=gp, locs=locs, vals=vals)
Notes:
- The
__post_init__
method sets up default values, initializes the warping if not provided, and sets up reporting and data preprocessing.
Source code in src/geostat/model.py
572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 |
|
fit(locs, vals, cats=None, step_size=0.01, iters=100, reg=None)
Trains the model using the provided location and value data by optimizing the parameters of the Gaussian Process (GP) using the Adam optimizer. Optionally performs regularization and can handle categorical data.
Parameters:
-
locs
(ndarray
) –A NumPy array containing the input locations for training.
-
vals
(ndarray
) –A NumPy array containing observed values corresponding to the
locs
. -
cats
(ndarray
, default:None
) –A NumPy array containing categorical data for each observation in
locs
. If provided, the data is sorted according tocats
to enable stratified training. Defaults to None. -
step_size
(float
, default:0.01
) –The learning rate for the Adam optimizer.
-
iters
(int
, default:100
) –The total number of iterations to run for training.
-
reg
(float or None
, default:None
) –Regularization penalty parameter. If None, no regularization is applied.
Returns:
-
self
(Model
) –The model instance with updated parameters, allowing for method chaining.
Examples:
Fitting a model using training data:
from geostat import GP, Model, Parameters
from geostat.kernel import Noise
import numpy as np
# Create parameters.
p = Parameters(nugget=1.)
# Create model
kernel = Noise(nugget=p.nugget)
model = Model(GP(0, kernel))
# Fit model
locs = np.array([[1.0, 2.0], [2.0, 3.0], [3.0, 4.0]])
vals = np.array([10.0, 15.0, 20.0])
model.fit(locs, vals, step_size=0.05, iters=500)
# [iter 50 ll -63.71 time 2.72 reg 0.00 nugget 6.37]
# [iter 100 ll -32.94 time 0.25 reg 0.00 nugget 13.97]
# [iter 150 ll -23.56 time 0.25 reg 0.00 nugget 22.65]
# [iter 200 ll -19.26 time 0.25 reg 0.00 nugget 32.27]
# [iter 250 ll -16.92 time 0.25 reg 0.00 nugget 42.63]
# [iter 300 ll -15.52 time 0.24 reg 0.00 nugget 53.50]
# [iter 350 ll -14.63 time 0.24 reg 0.00 nugget 64.71]
# [iter 400 ll -14.03 time 0.24 reg 0.00 nugget 76.10]
# [iter 450 ll -13.61 time 0.25 reg 0.00 nugget 87.52]
# [iter 500 ll -13.32 time 0.24 reg 0.00 nugget 98.85]
Using categorical data for training:
cats = np.array([1, 1, 2])
model.fit(locs, vals, cats=cats, step_size=0.01, iters=300)
# [iter 30 ll -12.84 time 0.25 reg 0.00 nugget 131.53]
# [iter 60 ll -12.62 time 0.15 reg 0.00 nugget 164.41]
# [iter 90 ll -12.53 time 0.16 reg 0.00 nugget 191.70]
# [iter 120 ll -12.50 time 0.16 reg 0.00 nugget 211.74]
# [iter 150 ll -12.49 time 0.15 reg 0.00 nugget 225.07]
# [iter 180 ll -12.49 time 0.16 reg 0.00 nugget 233.15]
# [iter 210 ll -12.49 time 0.15 reg 0.00 nugget 237.64]
# [iter 240 ll -12.49 time 0.15 reg 0.00 nugget 239.92]
# [iter 270 ll -12.49 time 0.15 reg 0.00 nugget 240.98]
# [iter 300 ll -12.49 time 0.15 reg 0.00 nugget 241.42]
Notes:
- The
fit
method uses the Adam optimizer to minimize the negative log-likelihood (ll
) and any regularization penalties specified byreg
. - During training, if
cats
are provided, data points are sorted according tocats
to ensure grouped training. - The
verbose
flag determines whether training progress is printed after each iteration. - After training, parameter values are saved and can be accessed or updated using the model's attributes.
Source code in src/geostat/model.py
753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 |
|
generate(locs, cats=None)
Generates synthetic data values from the Gaussian Process (GP) model based on the provided location data. This method simulates values based on the GP's covariance structure, allowing for random sample generation.
Parameters:
-
locs
(ndarray
) –A NumPy array containing the input locations for which to generate synthetic values.
-
cats
(ndarray
, default:None
) –A NumPy array containing categorical data corresponding to
locs
. If provided, data points are permuted according tocats
for stratified generation. Defaults to None.
Returns:
-
self
(Model
) –The model instance with generated values stored in
self.vals
and corresponding locations stored inself.locs
. This enables method chaining.
Examples:
Generating synthetic values for a set of locations:
from geostat import GP, Model, Parameters
from geostat.kernel import Noise
import numpy as np
# Create parameters.
p = Parameters(nugget=1.)
# Create model
kernel = Noise(nugget=p.nugget)
model = Model(GP(0, kernel))
# Generate values based on locs
locs = np.array([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]])
model.generate(locs)
generated_vals = model.vals # Access the generated values
print(generated_vals)
# [0.45151083 1.23276189 0.3822659 ] (Values are non-deterministic)
Notes:
- Conditional generation is currently not supported, and this method will raise an assertion error if
self.locs
andself.vals
are already defined. - Generation from a distribution is not yet supported, and an assertion error will be raised if
self.parameter_sample_size
is notNone
. - If
cats
are provided, the data is permuted according tocats
for stratified generation, and the original order is restored before returning.
Source code in src/geostat/model.py
1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 |
|
predict(locs2, cats2=None, *, subsample=None, reduce=None, tracker=None, pair=False)
Performs Gaussian Process (GP) predictions of the mean and variance for the given location data. Supports batch predictions for large datasets and can handle categorical data.
Parameters:
-
locs2
(ndarray
) –A NumPy array containing the input locations for which predictions are to be made.
-
cats2
(ndarray
, default:None
) –A NumPy array containing categorical data for the prediction locations (
locs2
). If provided, the data points will be permuted according tocats2
. Default is None. -
subsample
(int
, default:None
) –Specifies the number of parameter samples to be used for prediction when
parameter_sample_size
is set. Only valid if parameters are sampled. Default is None. -
reduce
(str
, default:None
) –Specifies the reduction method ('mean' or 'median') to aggregate predictions from multiple parameter samples. Only valid if parameters are sampled. Default is None.
-
tracker
(Callable
, default:None
) –A tracking function for monitoring progress when making predictions across multiple samples. Default is None.
-
pair
(bool
, default:False
) –If True, performs pairwise predictions of mean and variance for each pair of input points in
locs2
.
Returns:
-
m
(ndarray
) –The predicted mean values for the input locations.
-
v
(ndarray
) –The predicted variances for the input locations.
Examples:
Making predictions for a set of locations:
from geostat import GP, Model, Parameters
from geostat.kernel import SquaredExponential
import numpy as np
# Create parameters.
p = Parameters(sill=1.0, range=2.0)
# Create model
kernel = SquaredExponential(sill=p.sill, range=p.range)
model = Model(GP(0, kernel))
# Fit model
locs = np.array([[1.0, 2.0], [2.0, 3.0], [3.0, 4.0]])
vals = np.array([10.0, 15.0, 20.0])
model.fit(locs, vals, step_size=0.05, iters=500)
# [iter 50 ll -40.27 time 2.29 reg 0.00 sill 6.35 range 1.96]
# [iter 100 ll -21.79 time 0.40 reg 0.00 sill 13.84 range 2.18]
# [iter 150 ll -16.17 time 0.39 reg 0.00 sill 22.31 range 2.44]
# [iter 200 ll -13.55 time 0.39 reg 0.00 sill 31.75 range 2.76]
# [iter 250 ll -12.08 time 0.38 reg 0.00 sill 42.08 range 3.12]
# [iter 300 ll -11.14 time 0.38 reg 0.00 sill 53.29 range 3.48]
# [iter 350 ll -10.50 time 0.38 reg 0.00 sill 65.36 range 3.85]
# [iter 400 ll -10.05 time 0.39 reg 0.00 sill 78.29 range 4.22]
# [iter 450 ll -9.70 time 0.39 reg 0.00 sill 92.07 range 4.59]
# [iter 500 ll -9.43 time 0.39 reg 0.00 sill 106.70 range 4.95]
# Run predictions
locs2 = np.array([[1.5, 1.5], [2.5, 4.0]])
mean, variance = model.predict(locs2)
print(mean)
# [ 9.89839798 18.77077269]
print(variance)
# [2.1572128 0.54444738]
Notes:
- If
subsample
is specified, it should be used only whenparameter_sample_size
is defined. - The
reduce
parameter allows aggregation of predictions, but it's valid only with sampled parameters. - The method supports pairwise predictions by setting
pair=True
, which is useful for predicting the covariance between two sets of locations. - The internal
interpolate_batch
andinterpolate_pair_batch
functions handle the prediction computations in a batched manner to support large datasets efficiently.
Source code in src/geostat/model.py
1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 |
|
set(**values)
Sets the values of the model's parameters based on the provided keyword arguments.
Each parameter specified must exist in the model; otherwise, a ValueError
is raised.
Parameters:
-
values
(keyword arguments
, default:{}
) –A dictionary of parameter names and their corresponding values that should be set in the model. Each key corresponds to a parameter name, and the value is the value to be assigned to that parameter.
Returns:
-
self
(Model
) –The model instance with updated parameter values, allowing for method chaining.
Raises:
-
ValueError
–If a provided parameter name does not exist in the model's parameters.
Examples:
Update parameter value using set
:
from geostat import GP, Model, Parameters
from geostat.kernel import Noise
# Create parameters.
p = Parameters(nugget=1.)
# Create model
kernel = Noise(nugget=p.nugget)
model = Model(GP(0, kernel))
# Update parameters
model.set(nugget=0.5)
Notes:
- The
set
method retrieves the current parameters usinggather_vars
and updates their values. The associated TensorFlow variables are also recreated. - This method is useful for dynamically updating the model's parameters after initialization.