Constant
src.geostat.kernel.Constant
Bases: Kernel
Constant kernel class for Gaussian Processes (GPs).
The Constant
class defines a simple kernel that produces a constant covariance value across
all pairs of input locations. This kernel is typically used to represent a baseline level of
variance (sill) in the GP model.
Parameters:
-
sill
(float or Variable
) –The constant value representing the sill (baseline variance) of the kernel.
Examples:
Creating and using a Constant
kernel:
from geostat import Parameters
from geostat.kernel import Constant
import numpy as np
# Create parameters.
p = Parameters(sill=2.0)
# Create a Constant kernel with a sill value of 2.0 and call it
locs1 = np.array([[0.0], [1.0], [2.0]])
locs2 = np.array([[0.0], [1.0], [2.0]])
constant_kernel = Constant(sill=p.sill)
covariance_matrix = constant_kernel({'locs1': locs1, 'locs2': locs2, 'sill': 2.0})
print(covariance_matrix)
# tf.Tensor(
# [[2. 2. 2.]
# [2. 2. 2.]
# [2. 2. 2.]], shape=(3, 3), dtype=float32)
Notes:
- The
call
method returns the constant value specified bysill
for all pairs of input locations. - The
vars
method returns the parameter dictionary forsill
using theppp
function. - The
Constant
kernel is useful when you want to add a fixed variance component to your GP model.